DEPARTMENT OF PHYSICS, RANAGHAT COLLEGE

SYLLABUS DISTRIBUTION AND COURSE OUTCOMES (Cos) ACADEMIC YEAR: 2018 to 2023

FOR B. Sc. (PHYSICS HONOURS) COURSES (SEM: I, II, III, IV, V and VI)

SL.	COURSE	COURSE TITLE AND	NAME OF	
NO.	CODE	TOPIC TAUGHT	THE	
	Credit (4 + 2)	(THEORY AND	TEACHER/	THIS COURSE COTCOMES
		PRACTICAL)	MENTOR	
1.	PHY-H-CC- T/P- 01	Mathematical Physics- I	TG	This Course will help students in the following ways Students will understand mathematics and the mathematical concep needed for a proper understanding of physics. At the end students will lear vector calculus like differentiation, integration, orthogonal curvilinear coordinates. They will learn to solve ordinary differential equation for some real physical problems.
		1. Calculus and Vector Calculus		
		2. Vector Integration, Orthogonal Curvilinear Coordinates and Dirac Delta Function and its properties.	KR	
		3. Lab	KR, TG	Hands on training like 2D and 3D graph plotting - plotting functions and datafiles, fitting data using gnu plot's fit function, polar and parametric plots, modifying the appearance of graphs, Surface, and contour plots, exporting plots will pertain for future study in this field
2.	РНҮ-Н-СС- Т/Р- 02	Mechanics		The students would learn about the behaviour of physical bodies it provides the basic concepts related to the motion of all the objects around us in our daily life. The reverse built of
		1. Fundamental of		in science and technology: especially in the field of mechanical
		Dynamics to	SM	engineering. The course comprises of the study vectors, laws of motion
		Rotational Dynamics		momentum, energy, rotational motion, gravitation, fluids, elasticity and special relativity
		2. Elasticity to Special	AB	
		theory of Relativity		
		3. Lab	AB, SM, SB	Students would perform basic experiments related to mechanics and get familiar with various measuring instruments would learn the importance of accuracy of measurements.
3.	РНҮ-Н-СС- Т/Р- 03	Electricity and Magnetism		It gives an opportunity for the students to learn about one of the fundamental interactions of electricity and magnetism, both as separate phenomena and as a singular electromagnetic force. The course contains vector analysis, electrostatics, magnetism, electromagnetic induction and
	-	1. Electric field and electric potential to Magnetic Properties of Matter.	KR	Maxwell's equations. The course is very useful for the students in almost every branch of science and engineering.

2. Electromagnetic Induction to Ballistic Galvanometer	SM	
3. Lab	RS, KR, SB	Students would gain practical knowledge about electricity and magnetism and measurements such as: Resistance. Voltage, current etc.

SL.	COURSE	COURSE TITLE AND TOPIC	NAME OF	
NO.	CODE	TAUGHT	THE	COURSE OUTCOMES
			TEACHER/	
			MENTOR	
4.	PHY-H- CC-T/P-	Waves and Optics		The course comprises of the study of superposition of harmonic oscillations, waves motion (general), oscillators, sound, wave optics, interference, diffraction, polarization. The course is important for the
	04	1. Superposition of two		students to make their career in various branches of science and
		perpendicular Harmonic		engineering, especially in the field of photonic engineering
		Oscillations to Fresnel Diffraction	AB	
		2. Lab	SM, SB	The practical knowledge of wave motion doing experiments Tuning fork, electric vibrations. They would also learn optical phenomena such as interference, diffraction and dispersion and do experiments related to optical devices. Prism, grating, spectrometers
5.	PHY-H- CC-T/P- 05	Mathematical Physics- II		Would learn mathematical methods to solve the various problems in physics. The topics include the calculus of functions, Fourier transform, special functions and special integrals, partial differential equations, complex analysis, and variables.
		1. Fourier Series to Frobenius Method and Special Functions	16	
		2. Some Special Integrals to Partial Differential Equations	RS	
		3. Lab	SM	Learn the Basic Programming Concept, Improve the logical as well as Computational ability.
6.	PHY-H- CC-T/P-	Thermal Physics		 To understand various thermodynamic processes like isothermal, isobaric, isochoric processes, and laws o thermodynamics
	06	1. Introduction to Thermodynamics to 2 nd Law of Thermodynamics and Practical	AB	 To understand the concept of entropy To understand Carnot's cycle, Heat engines and Refrigerators To understand Principle of thermometry and various types of thermometers like Liquid filled thermometers, Gas filled thermometers, Bimetallic thermometers, Platinum resistance thermometer
		2. 2 nd Law of Thermodynamics, Entropy and Thermodynamic Potentials	SM	 The course contains kinetic theory of gases and the behavior of real gases

2 | Page

	3. Kinetic Theory of Gases	SG	
	4. Lab	AB, SB	Students would gain practical knowledge about heat and radiation, thermodynamics, thermos- emf etc. and perform various experiments

SL. NO.	COURSE	COURSE TITLE AND TOPIC TAUGHT	NAME OF THE TEACHER/ MENTOR	COURSE OUTCOME
7.	РНҮ-Н- СС-Т/Р- 07	Digital Systems and Applications 1. Introduction to CRO to Introduction to Assembly Language.	KR	The students would gain the knowledge of CRO and its use. They would know about Integrated circuits. The course has been deigned to learn Digital circuits, Boolean Algebra, Data Processing circuits, Arithmetic Circuits, Computer Organization etc. which are foundations block of Digital Electronics.
		2. Lab		Students will learn to handle CRO to measure voltage, time period of periodic wave form. Learn to design various Logic gates and use of 8085 Microprocessor.
8.	PHY-H- CC-T/P- 08	Mathematical Physics- III 1. Complex Analysis and Integral Transforms	ΤG	The emphasis of the course is on applications in solving problems of interest to physicists. Students will be examined based on problems, seen and unseen. Would learn mathematical methods to solve the various problems in physics. The topics include complex analysis, integral transform, Laplace transform etc.
		2. Laplace Transforms	RS	
		3. Lab	SM	Learn the Basic Programming Concept, Improve the logical as well as Computational ability.
9.	РНҮ-Н- СС-Т/Р- 09	Elements of Modern Physics Planck's quantum, Planck's constant and light as a collection of photons Radioactivity, Laser	АВ	Students would know about the basic principles in the development of modern physics. The topics covered in the course build a foundation of undergraduate physics students to study the advance branches: quantum physics, Radioactivity and Lasers. The course contains the study of Planck's hypothesis, photoelectric effect, Compton effect, matter waves, atomic models, Schrodinger wave equations, and brief idea of Radioactivity.
		Lab	AB	In this course students would be able to understand Basic experiments of modern physics such as: Determination of Plank's and Boltzmann's constants, Determination of ionization potential, Wavelength of H- spectrum, Single and double slit diffraction, Photo electric effect and determination of e/m
10.		Analog Systems and Applications		In this course students would be able to understand semiconductor diodes, Amplifiers, Op amps and its applications.

	PHY-H-	Semiconductor Diodes to		
	CC-T/P-	Conversion		
	10		KR	Students up to be a transferring issuits such as Amplifiers and
				Oscillators. Various types of Amblifier and Oscillator circuits their
SL.	COURSE	COURSE TITLE AND TOPIC	NAME OF	working and applications in domestic, industrial, and scientific
NO.	CODE	TAUGHT	THE	devices/equipment. COURSE OUTCOME
			TEACHER/	
			MENTOR	
11.	PHY-H-	Quantum Mechanics		Quantum mechanics provides a platform for the physicists to describe
	CC-T/P-	and Applications		the behavior of matter and energy at atomic and subatomic level. The
	11	1. Time dependent	1	our normal observations. The course includes the study of Schrodinger
		Schrodinger equation to	AB	equations, particle in one dimension potential, quantum theory of H like
		Quantum theory of		atoms, atoms/molecules in electric and magnetic fields.
		hydrogen-like atoms	TG	
		2.Atoms in Electric &		
		Magnetic Fields to Many		
		electrons' atoms		
		3 Lah	SM	Various practical problems solving methods related to Quantum
		5. 200	5.01	Mechanics would be learned by students.
12.	PHY-H-	Solid State Physics		Students would be able to understand various types of crystal structures
	CC-T/P- 12		RS	reciprocal space and learn the Bragg's X-ray diffraction in crystals. Would
		1. Theory		also learn about phonons and lattice.
				The source Browledge practical knowledge of various physical phenomena
		2. Lab	RS	such as: magnetism, dielectrics, ferroelectrics, and semiconductors.
				Students would gain a hands-on learning experience by performing
				experiments on these properties of materials.
13.	PHY-H-	Electro-Magnetic		The study of electromagnetic theory provides foundation for the
	CC-T/P-	Theory		part of the course opens scope for students seeking research
	13	1 Theory	TG	opportunities in space, atmospheric and planetary sciences etc. The
		1. Theory		course involves the study of electromagnetic theory, Maxwell's
			DC	Students will be able to understand polarization of light, Stefan's Law of
		2. Lab	КЭ	Radiation, and determination of Boltzmann Constant.
14.		Statistical Mechanics		The course includes the study of Basic postulates, application of classical
			-	distribution to ideal gases, imperfect gases, BE, FD, MB statistics and black body radiation.
		1. Classical Statistics and		
		Classical Theory of	AB	
	PHY-H-	Radiation.		
	CC-T/P-	2 Quantum Theory of	KR	1
	14	Radiation, BF statistics		
		and FD statistics.		
		2 Jah	KR	Student will learn C/C++/ Scilab for solving the problems based on
		5. Lau		Statistical Mechanics.

4 | Page

PHYSICS-H-DSE 1-4 (ELECTIVES)

SL. NO.	COURSE CODE	COURSE TITLE AND TOPIC TAUGHT	NAME OF THE TEACHER/	COURSE OUTCOME
15.	PHY-H-	Classical Dynamics	MENTOR	In this course students would learn to apply the Newtonian laws using
	DSE-T/P- 01	1. Classical Mechanics of Point Particles and Electromagnetic Radiation	SG	various mathematical formulations to describe the motions of macroscopic objects using generalized coordinates, momentum, forces, and energy. Studying classical dynamics would help to understand advanced branches of physics.
		2. Special Theory of Relativity	SM	
16.	PHY-H- DSE-T/P- 02	Nuclear and Particle Physics 1. General Properties of Nuclei to Nuclear Reactions 2. Nuclear Astrophysics to Particle physics	RS KR	In this course students would know about the general properties of nuclei, nuclear forces and detectors, radioactive decay, and nuclear reactions. The course expands the knowledge of students especially, the various applications of nuclear physics The course builds a foundation for the students to carry out research in the field of nuclear physics, high energy physics, nuclear astrophysics, nuclear reactions and applied nuclear physics.
17.	PHY-H- DSE-T/P- 03	Communication Electronics 1. Theory	SM	This course helps the students to gain basic ideas of the construction and working of electronic devices and circuits and to understand the fundamentals of communication systems. The communication electronics has wide applications in computing, process control, signal processing, communication systems, digital instruments etc.
		2. lab	SM	
18.	PHY-H- DSE-T/P- 04	Bio- Physics/ Dissertation 1. Building Blocks & Structure of Living State to Open systems and chemical thermodynamics 2. Diffusion and transport to Bioenergetics and Molecular motors 3. Dissertation Project	SG AB KR, RS, TG, SM	Course would provide the applications of physical laws in the understanding of biological processes, various methods in the Biophysical analysis including florescence spectroscopy, Raman spectroscopy and characterization of bio molecules would be studied. This course is based on preliminary research-oriented topics both in theory and experiments. The students are given particular research problems under the supervision of faculty members of the department. Students have the opportunity to work on theoretical as well as
				Students have the opportunity to work on theoretical as we experimental topics in current physics.

Skill Enhancement Courses (SEC) (For Honours) (Syllabus revised from 2022-23 session)

SL. NO.	COURSE	COURSE TITLE AND TOPIC TAUGHT	NAME OF THE TEACHER/ MENTOR	COURSE OUTCOME
15.	PHY—H- SEC-T/P- 01	Physics Workshop Skills/ Computational Physics Skills/ Electrical circuits & Network Skills/ Basic Instrumentation Skills	SG SM	Physics Workshop Skins The ann of the chancel and electrical tools through familiar and experience with various mechanical and electrical tools through hands-on mode Computational Physics. The aim of this course is not just to teach computer programming and numerical analysis but to emphasize its role in solving problems in Physics. • Highlights the use of computational methods to solve physical problems. • Highlights the use of computational methods to solve physical problems.
		(Semester iii)		 Ose of computer language Course will consist of hands-on training on the Problem solving on Computers Course will consist of hands-on training on the Problem solving on Computers Electrical Circuits and Network Skills. The aim of this course is to enable the students to design and trouble shoots the electrical circuits, networks, and appliances through hands-on mode. Basic Instrumentation Skills. This course is to get exposure with various aspects of instruments and their usage through hands-on mode. Experiments listed below are to be done in continuation of the topics.
16.	PHY—H- SEC-T/P- 02	Renewable Energy & Energy Harvesting/ Radiation Safety/ Technical Drawing/ Applied Optics/ Weather Forecasting (Semester-IV)	RS KR	Renewable Energy a transformation of the students but to provide them with exposure impart theoretical knowledge to the students but to provide them with exposure and hands-on learning wherever possible Radiation Safety. The aim of this course is for awareness and understanding regarding radiation hazards and safety. The list of laboratory skills and experiments are there in the course are to be done in continuation of the topics Technical Drawing. Students will get exposure in various engineering drawing and CAD drawing.
				Applied Optics: Theory includes only qualitative explanation. Various experiments on those topics will give knowledge about the course to the students. Weather Forecasting: The aim of this course is not just to impart theoretical knowledge to the students but to enable them to develop an awareness and understanding regarding the causes and effects of different weather phenomenon and basic forecasting techniques.

SYLLABUS DISTRIBUTION AND COURSE COMPLETION REPORT

FOR B. Sc. (GENERAL) COURSES (SEM: I, II, III, IV, V and VI)

SL. NO.	COURSE	COURSE TITLE AND TOPIC TAUGHT	NAME OF THE TEACHER/ MENTOR	COURSE OUTCOME
1.	PHY-G- CC-T/P- 01	Mathematical Physics – I/ Mechanics /Electricity and Magnetism 1. Fundamentals of Dynamics to Rotational Dynamics 2. Elasticity to Oscillations 3. Non-Inertial Systems and Special Theory of	SG AB RS	The students would learn about the behavior of physical bodies it provides the basic concepts related to the motion of all the objects around us in our daily life. The course builds a foundation of various applied field in science and technology; especially in the field of mechanical engineering. The course comprises of the study vectors, laws of motion, momentum, energy, rotational motion, gravitation, fluids, elasticity, and special relativity.
		Relativity 4. Practical	SG, AB, SB	Students would perform basic experiments related to mechanics and also get familiar with various measuring instruments would learn the
2.	PHY-G- CC-T/P- 02	Waves and Optics/Mathematical PhysicsII/ Thermal Physics /Digital Systems and Applications 1. Introduction to Thermodynamics to Maxwell's Thermodynamic Relations	SM	importance of accuracy of measurements. The course makes the students able to understand the basic physics of heat and temperature and their relation with energy, work, radiation and matter. The students also learn how laws of thermodynamics are used in a heat engine to transform heat into work. The course contains the study of laws of thermodynamics, thermodynamic description of systems, thermodynamic potentials, kinetic theory of gases, theory of radiation and statistical mechanics.
		2. Kinetic Theory of Gases	SG SG, SB	Students would gain practical knowledge about heat and radiation,
3.	PHY-G- CC-T/P- 03	Mathematical Physics – III/Elements of Modern Physics/Analog Systems and Applications 1. Semiconductor Diodes to Bipolar Junction transistors	SG	thermodynamics, thermo emf etc. and perform various experiments. In this course students would be able to understand semiconductor diodes, Amplifiers, Op amps and its applications.

7 Page

s such as Amplifiers and
lator circuits their working strial, and scientific
ie astrophysics part of the ich opportunities in space, purse involves the study of ns and electromagnetic
on of light, Stefan's Law of
nstant.

SL. NO.	COURSE CODE	COURSE TITLE AND TOPIC TAUGHT	NAME OF THE TEACHER/ MENTOR	COURSE OUTCOME
5.	PHY-G- DSE-T/P- 01	Mechanics/Electricity and Magnetism/ Thermal Physics and Statistical Mechanics /Waves and Optics 1. Vectors to Rotational Motion	SG	The students would learn about the behavior of physical bodies to provides the basic concepts related to the motion of all the objects around us in our daily life. The course builds a foundation of various applied field in science and technology; especially in the field of mechanical engineering. The course comprises of the study vectors, laws of motion, momentum, energy, rotational motion, gravitation, fluids, elasticity, and special relativity.
		2. Oscillations, Special Theory of Relativity	TG	
		3. Gravitation, Elasticity	AB	
		4. Practical	SG, SB	Students would perform basic experiments related to mechanics and get familiar with various measuring instruments would learn the importance of accuracy of measurements.
6.	PHY-G- DSE-T/P- 02	Digital, Analog Circuits and Instrumentation/Elements of Modern Physics/Solid State Physics/Quantum Mechanics/Nuclear and Particle Physics 1. UNIT-1: Digital Circuits 2. UNIT-2: Semiconductor Devices and Amplifiers 3. UNIT-3: Operational Amplifiers (Black Box approach), UNIT-4: Instrumentations	SG TG SM	Students will get knowledge on Digital electronics, test semiconductor devices, Operational Amplifiers, and other instrumentations skills.
		4. Practical	SG, TG	Students would learn in experimenting about electronic circuits such as Amplifiers and Oscillators. Various types of Amplifier and Oscillator circuits their working and applications in domestic, industrial, and scientific devices/equipment like CRO etc.
7.	PHY-G- SEC-T/P- 01	Electrical Circuit and Network Skill 1. Basic Electricity Principles to Generators and Transformers. 2. Electric Motors to Electrical Wiring.	SM TG	The aim of this course is to enable the students to design and trouble shoots the electrical circuits, networks, and appliances through hands-on mode.
8.		Radiation Safety		

	PHY-G- SEC-T/P- 02	1. Basics of Atomic and Nuclear Physics to Interaction of Neutrons.	SM	The aim of this course is for awareness and understanding regarding radiation hazards and safety. The list of laboratory skills and experiments are there in the course are to be done in continuation of the topics.
		2. Radiation detection and monitoring devices: Radiation Quantities and Units to Application of nuclear techniques.	TG	to cuplitative explanation. Various experiments
9.	PHY-G-	Applied Optics		Theory includes only qualitative explanation of the course to the on those topics will give knowledge about the course to the
	SEC-T/P-	1. Sources and Detectors	AB	students.
	03	2. Fourier Optics, Holography, Photonics: Fibre Optics	TG	fable source is not just to impart theoretical knowledge
10.	PHY-G-	Renewable Energy and		The aim of this course is not just as much as the provide them with exposure and hands-on to the students but to provide them with exposure and hands-on
	SEC-T/P-	Energy Harvesting		learning wherever possible.
	04	1. Fossil fuels and Alternate Sources of energy to Ocean	AB	
		2. Geothermal Energy to Demonstrations and Experiments.	TG	

Generic Elective Course (GEC) (For Honours)

(SEM: I, II, III and VI) (Syllabus revised from 2022-23 session)

SL. NO.	COURSE CODE	COURSE TITLE AND TOPIC TAUGHT	NAME OF THE TEACHER/ MENTOR	COURSE OUTCOME
1.	PHY—H-GE- T/P-01	Mechanics/ Electricity and Magnetism 1. Vectors to Rotational Motion 2. Gravitation to	KR	The students would recirce related to the motion of all the objects around us in our daily life. The course builds a foundation of various applied field in science and technology; especially in the field of mechanical engineering. The course comprises of the study vectors, laws of motion, momentum, energy, rotational motion, gravitation, fluids, elasticity, and special relativity. Students would perform basic experiments related to mechanics and get familiar with various measuring instruments would learn the importance of accuracy of measurements. The course makes the students able to understand the basic physics of heat and temperature and their relation with energy, work, radiation and matter. The students also learn how laws of thermodynamics are used in a heat engine to transform heat into work. The course contains the study of laws of thermodynamic potentials, kinetic theory of gases, theory of radiation and statistical mechanics like MB, BE and FD statistics.
		Special Theory of Relativity 3. Practical	AB RS, AB, TG, SB	
2.	РНҮ—Н-GE- Т/Р-02	Thermal Physics and Statistical Mechanics/ Waves and Optics 1. Laws of Thermodynamics, Thermodynamical Potentials 2. Kinetic Theory of Gases, Theory of Radiation, Statistical	RS	
		3. Practical	SG, RS, TG, SB	Students would gain practical knowledge about heat and radiation, thermodynamics, thermos- emf etc. and perform various experiments.
3.	РНҮ—Н-GE- Т/Р-03	Mechanics/ Electricity and Magnetism 1. Vectors to Rotational Motion	RS SG	The students would learn about the behavior of physical bodies it provides the basic concepts related to the motion of all the objects around us in our daily life. The course builds a foundation of various applied field in science and technology; especially in the field of mechanical engineering. The course comprises of the study vectors, laws of motion, momentum, energy, rotational motion, gravitation, fluids, elasticity, and special relativity.
		2. Gravitation to Special Theory of Relativity		
		3. Practical	RS, KR, SB	Students would perform basic experiments related to mechanics and get familiar with various measuring instruments would learn the importance of accuracy of measurements.

11 | Page

4.	PHY—H-GE- T/P-04	Thermal Physics and Statistical Mechanics/ Waves and Optics 1. Theory	RS	The course makes the students able to understand the basic physics of heat and temperature and their relation with energy, work, radiation and matter. The students also learn how laws of thermodynamics are used in a heat engine to transform heat into work. The course contains the study of laws of thermodynamics, thermodynamic description of systems, thermodynamic potentials, kinetic theory of gases, theory of radiation and statistical mechanics like MB, BE and ED statistics.
		2. Practical	RS, AB, SB	Students would gain practical knowledge about heat and radiation, thermodynamics, thermos- emf etc. and perform various experiments.

PROGRAMME OUTCOMES (POs) (B. Sc. Physics Hons. and General)

Knowledge Outcomes:

After completing B. Sc. (Physics) Programme students will be able to:

- 1. Apply the basic principles of Physics to the events occurring in our everyday life.
- 2. Try to find out or analyse scientific reasoning and critical thinking through the knowledge that they acquired in classrooms, laboratory etc. and apply them in various real life situations.

Skill Outcomes:

After completing B.Sc. (Physics) Programme students will be able to:

1. Use of computers and various software and programming skills

- 2. apply the knowledge to develop the sustainable and eco-friendly technology for pollution free environment

3. collaborate effectively on team-oriented projects in the field of Physics 4. Communicate scientific information in a clear and concise manner both orally and in writing or through audio

visual presentations.

Generic outcomes:

After completing the course Students will

- 1. develop ability to work in group.
- 2. develop capacity of critical reasoning, judgment, and communication skills.
- 3. Develop abilities for logical thinking.

PROGRAMME SPECIFIC OUTCOMES (PSOs) (B. Sc. Physics Hons. and General)

At the completion of this undergraduate programme in Physics students will be benefited with the following Programme Specific Outcomes:

- 1. To understand the basic laws and explore the fundamental concepts of physics
- 2. To understand the concepts and significance of the various physical phenomena.
- 3. To carry out experiments to understand the laws and concepts of Physics.
- 4. To apply the theories learnt and the skills acquired to solve real time problems.
- 5. To acquire a wide range of problem-solving skills, both analytical and technical and to apply them.
- 6. To motivate the students to take Physics as a subject in their carrier through research and other related jobs in reputed institutions.
- This course introduces students to the methods of experimental physics. Emphasis will be given on laboratory techniques specially the importance of accuracy of measurements.
- 8. Providing a hands-on learning experience such as in measuring the basic concepts in properties of matter, heat, optics, electricity, and electronics.

13 Page